美国首先于1995年提出高性能金属零件的激光快速成形技术,在能源部研究计划支持下,Sandia及Los Alomos国家实验室率先发展出称为LENS(Laser Engineered Net Shaping)[4]及DLF(Directed Light Fabrication)[5]的技术,研究了不锈钢、镍基合金、钛合金、难熔金属等材料的组织及性能,并采用该技术成功制造出铼及铱的喷管[6],显示出该技术在高性能金属零件直接成形方面的优势,并于1998年由Optomec公司成功推出商业化的LENS系统。随后美国的Stanford University、University of Michigan、英国的University of Birmingham、University of Manchester、University of Liverpool及加拿大的National Research Council等也发展了分别称作为SDM(Shape Deposition Manufacturing)、DMD(Direct Metal Deposition)、DLF(Direct Laser Fabrication)、DLD(Direct Laser Deposition)、LDC(Laser Direct Casting)、LC(Laser Consolidation)的技术[7-11],尽管各自的名称不同,但原理和方法是一致的,系统所配备的激光器主要有CO2气体激光器、Nd:YAG固体激光器及光纤激光器,所成形的材料包括各种不锈钢、镍基合金、钛合金等。相关研究表明,激光快速成形的金属零件具有致密、细小的组织,成分均匀,力学性能达到或超过锻件水平[10-12],表1为激光快速成形不同材料的力学性能。由于该技术在大型钛合金结构件直接成形方面的突出优势及其在飞机等装备研制生产中的广阔应用前景,高性能钛合金结构件的激光快速成形研究一直是该领域的研究重点[3, 10-14]。美国MTS公司于1997年成立了专门从事钛合金飞机结构件激光快速成形技术开发应用的AeroMet公司,与Boeing、Lockheed Martin、Northrop-Grumman等飞机制造商合作,在美国空军、陆军及国防部有关研究计划支持下,进行激光快速成形钛合金飞机结构件的应用关键技术研究,直接成形出各种钛合金飞机结构件,于2000年9月完成了激光快速成形钛合金飞机机翼结构件的地面性能考核试验,构件的静强度及疲劳强度达到飞机设计要求[15],2001年AeroMet公司开始为Boeing公司F/A-18E/F舰载联合歼击/攻击机小批量试制发动机舱推力拉梁、机翼转动折叠接头、翼梁等钛合金次承力结构件,并于2002年率先实现激光快速成形钛合金次承力结构件在F/A-18等战机上的验证考核和装机应用,并制定出专门的技术标准(AMS 4999),图1是AeroMet公司为Boeing公司采用激光快速成形制造的飞机整体钛合金隔框。但由于所成形钛合金结构件的疲劳性能低于钛合金锻件,最终未能实现该技术在飞机主承力结构件上的应用,公司于2005年12月关闭。
利用激光熔池内的原位合金化过程,可以方便地进行新型合金材料的制备。Ohio State University的研究人员在LENS系统上用元素混合粉开展了激光快速成形Ti-10%(原子数分数)Nb[24]、Ni-25%(原子数分数)Mo[25]的研究,由于Ni与Mo之间负的混合焓及沉积时高的凝固速率,促进了Ni与Mo的均匀混合和过饱和固溶体的形成,而Ti-Nb系合金具有正的混合焓,导致沉积时存在未熔的富Nb颗粒及成分的不均匀。最近,在美国国家航空航天局及国防部支持下,为发展新一代高性能涡轮叶片及其高效制备技术,开展了采用元素混合粉末进行铌-硅化物基复合材料的激光快速成形研究,所沉积材料由Ti(Nb)5Si3、(Nb,Ti)3Si及(Nb,Ti)固溶体基体组成,组织明显得到细化,但存在一定量未熔的Nb粉末,且Si含量高时材料容易开裂[26]。采用激光熔炼技术已研究发展出多种金属硅化物合金并成功应用于钛合金表面高温耐磨涂层的激光熔覆制备[27]。上述研究表明,采用元素混合法进行激光快速成形时需要综合考虑不同元素之间的混合焓、熔点以及合金化所需要的条件,同时要精确控制原料粉末的成分及均匀性,鉴于上述要求,激光快速成形技术一般采用预合金化粉末来成形零件。