摘 要:首次使用I2D EA S 软件进行了B 型城市轨道交通车辆转向架的三维装配设计。阐述了转向架的主要结构设计特点和动力学性能参数的优化选择。
关键词:城市轨道交通;轻轨车辆;转向架;设计;参数;优化
1 概述
城市轨道交通具有安全、快速、准时、高效、节能、无污染和占地少的特点,能满足城市发展和环境保护的现实要求。发展城市轨道交通是解决城市公共交通问题的根本途径,也是城市可持续发展战略的必然选择。现代快速城市轨道交通系统采用全封闭车道、自动信号控制调度系统和轻型快速电动车组,行车密度大,h~ 40 km 平均旅行速度一般为30 km /h,最高运行h~ 90 km 速度为80 km /h,单向最大载客能力可达6 万人h~ 8 万人h。城市轨道交通车辆有三大关键技术:VVV F 调频调压交流传动与控制技术;轻量化车体技术;轻量化、高性能、高可靠性转向架技术。
B 型城市轨道交通车辆转向架为轻量化、低噪声、无摇枕转向架。轴箱弹簧为无磨耗圆锥叠层橡胶弹簧,采用H 型钢板压型焊接构架,中央悬挂为空气弹簧直接支承车体的三无结构,采用单元式单侧闸瓦踏面制动装置,牵引电机横向架悬。转向架分为动车转向架(图1) 和拖车转向架(图2)。在动车转向架的每根车轴上装有1 台交流牵引电动机、齿轮传动箱和联轴器。动车转向架与拖车转向架相比,除轴箱弹簧的特性参数不同外,其他零部件可完全互换。
图1 动车转向架装配图
图2 拖车转向架装配图
首次采用I2DEA S 软件对转向架直接进行三维装配设计。构架、轴箱等的三维造型设计为后续的有限元强度计算打下了基础。对各零部件进行了准确的质量、转动惯量、重心和主惯性轴位置的计算,以便为转向架的动力学性能计算提供可靠的基础数据。
采用我国现行标准的H SD 型车轮,车轮滚动圆直径为<840 mm ,踏面为LM 型磨耗形踏面。远期有条件时将采用噪声优化车轮和大等效斜度圆弧踏面。车轴为非标RC3 轴,轴颈直径为<120 mm,轴颈中心距为1 930 mm 。采用<120mm ×<240mm ×160mm 双列圆柱滚子轴承,轴箱材料为铸钢,有条件时将采用铝合金。
4. 2 构架组成
构架为H 型轻量化低合金高强度钢板焊接结构,主要由2 根侧梁和2 根横梁组成(图4)。侧梁上盖板、下盖板和立板的厚度分别为12 mm 、14 mm 、10 mm,侧梁内部设有多块厚度为8 mm 的筋板。构架横梁采用直径<180 mm 、壁厚14 mm 的无缝钢管,可提高构架主体结构的可靠性。侧梁与横梁的连接处和两横梁之间设有纵向加强梁。
图4 构架装配图
构架侧梁上焊有制动缸安装座、轴箱弹簧定位座等,横梁上焊有牵引电机吊座、齿轮箱吊杆座、牵引拉杆座和横向缓冲器座等。所有关键安装座的位置精度均通过对转向架构架的整体加工获得。采用三维有限元分析法进行了构架应力和振动模态分析。计算表明,构架整体应力分布合理,不存在薄弱环节。模态分析采用了L anczo s 方法,最低阶模态振型为构架扭曲,频率为3011 H z 。正常运用情况下,转向架构架的使用寿命不低于车体寿命(30 a),在此期间内不需要对转向架进行结构修整。转向架焊接制造完工后需进行消除焊接内应力的处理。
铁道车辆是一个复杂的多体动力学系统,不但有各个部件之间的相互作用力和相对运动关系,还有轮轨之间复杂的相互作用关系。在转向架设计过程中,笔者与北方交通大学合作,利用德国铁路专用软件S IM 2 PA CK 建立了车辆系统的多体动力学模型,对影响车辆动力学性能的转向架主要参数进行了优化计算。包括:一系圆锥橡胶弹簧的三向刚度、二系横向减振器阻尼、抗蛇行减振器阻尼、抗侧滚扭杆刚度和车轮踏面斜度的变化等。车辆系统的每种参数对车辆的动态响应、蛇行运动稳定性和曲线通过性能三个方面的影响是不同的,而且,提高车辆蛇行运动临界速度和改善车辆曲线通过性能这两者对悬挂参数的要求是有矛盾的。因此,车辆悬挂系统的结构设计和参数选择,只能按实际运用条件进行综合考虑。这些条件包括最高运营速度、曲线半径和超高以及线路不平顺等。通过多方案的参数优化选择,转向架蛇行运动的计算临界速度为220 km /h,动车、拖车的运行平稳性指标小于2. 5,曲线通过能力和运行安全性指标满足有关标准的要求。