佳工机电网 在线工博会 我的佳工网 手机版 English
关键字  
  选择展区 >>
您的位置: 首页 > 工业自动化展区 > 伺服与运动控制展厅 > 产品库 > 技术论文 > 正文 产品库 会展 人才 帮助 | 注册 登录  
伺服与运动控制
 按行业筛选
 按产品筛选
查看本类全部文章
e展厅 产品库 最新动态 技术文章 企业目录 资料下载 视频/样本 反馈/论坛
  技术应用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评 投稿 发表科技文章 
PWM应用中的低电压反馈
作者:德州仪器 (TI) 电源控制产品部 Steve Mappus
欢迎访问e展厅
展厅
4
伺服与运动控制展厅
电机驱动器, 伺服电机, 伺服控制系统, 数控系统, ...
就低电压高电流电源应用而言,开关式电源门极驱动要求特别重要。由于几个 MOSFET 器件通常并联以满足特定设计的高电流规范要求,因此单一集成电路控制器与驱动器解决方案的方便性就不再是可行的选择。MOSFET 并联可降低漏极到源极的导通电阻,并减少传导损耗。但是,随着并联器件的增多,门极充电的要求也迅速提高。由于 MOSFET 的内部阻抗大大低于驱动级,因此与驱动并联组合相关的大多数功率损耗其形式都表现为控制器集成电路的散热。因此,许多单片解决方案的驱动级由于并联组合的关系都无法有效地驱动更高的门极充电。

为了解决该问题,业界近期提供了更多的高级 MOSFET 驱动器产品。许多新产品都包括大大高于单片解决方案所提供的驱动电流功能。驱动器集成电路放置得离 MOSFET 门越近,更高的驱动电流驱动并联 MOSFET 的效率就越高。除了驱动电流增大外,现在的许多高级 MOSFET 驱动器还采用先进的技术以精确控制两个开关之间的计时,就好像同步降压应用中所采用的那样。

使用带有独立的 PWM 控制器的外部 MOSFET 驱动器,这有助于电源设计人员获得必需的灵活性,能够满足上述低电压、高电流电源转换器对高性能门极驱动所提出的要求。由于现有的 PWM 控制器与驱动器品种丰富,因此采用上述方法所能实现的特性组合似乎无穷无尽。

随着输出电压接近低于 1V 电平,电源控制集成电路制造商推出了包括适当的内部低电压参考的产品,以适应新情况的要求。但是,如果某位设计人员希望既采用高性能驱动器,又使用包括的内部参考高于反馈电压的 PWM,那该怎么办呢?换言之,调节输出电压为 1V 的情况通常都需要 1V 或更低的参考电压,由 PWM 内部误差信号放大器的同相输入提供。

应用电路(见图 1)提出了一种备用方法,可反馈低于 PWM 参考电压的输出电压。正常情况下,输出电压高于误差信号放大器的参考,因此 VOUT 与接地之间简单的电阻分压器会将调节电压设置在 PWM 误差信号放大器的同相输入的水平上。但是,当 VOUT 低于误差信号放大器参考电压时,反馈电压必须分压,而不是下降。分压意味着必须从另一个调节电压源添加一些额外的电压至反馈电压。


图 1:低电压同步降压反馈解决方案

UCC3803(同样见图 1)在集成电路的引脚八上提供 4V 的内部电压参考。此外,在 PWM 误差信号放大器的同相输入上的内部电压为 VREF/2,或 2V。通过 R1 反馈 100% 的 VOUT,再通过 R2 反馈一部分 VREF,可在引脚二上对 UCC3803 反馈节点应用叠加的原理:

就图 1 显示的应用电路而言,UCC3803 配置为电压模式操作,因此可适当选择第三类补偿方案。由于 R1 是控制环路补偿的一部分,因此必须先计算出该值,然后根据以下方程式选出 R2 的值:

如果应用中 PWM 控制器不向集成电路外部提供参考电压,我们仍可应用上述技术,但还需要从其它调节源添加图 1 中 VREF 所提供的额外电压。

是选择采用带有集成驱动级的单一集成电路 PWM 控制器,还是考虑采用带有与 PWM 控制器分开的外部驱动器集成电路的双芯片解决方案,有时很难说清楚。双芯片解决方案可实现性能增强的优势,但也必须进行认真比较,因为它相对造成成本增加,而且失去了单集成电路方法的简单性。不过,当低电压、高电流以及高频电源转换的最佳性能绝对必需时,我们选择哪种 PWM 控制器也就不必受限于误差信号放大器参考电压了。

参考文献

UCC27221/2《高效预测性同步降压驱动器》数据表,TI 资料号 SLUS486A UCC3800/1/2/3/4/5《低功率 BiCMOS 电流模式 PWM》数据表,TI 资料号 SLUS270A 《使用 UCC27222 采用预测性门极驱动技术的 12V 至 1.8V、20A 高效同步降压转换器》,作者:Steve Mappus,随 UCC27222EVM 提供的用户指南,TI 资料号 SLUU140

关于作者
Steve Mappus 是 TI 新罕布什尔州曼彻斯特分部的资深电源应用专家,负责电源控制集成电路的市场营销与新产品开发的支持工作。Steve Mappus在电源设计方面拥有超过 12 年的经验,并获得马萨诸塞州斯普林菲尔德市的新英格兰西部学院的 BSEE 学位。他的邮件地址为:steven_mappus@ti.com。 (end)
文章内容仅供参考 (投稿) (3/20/2005)
查看更多伺服与运动控制相关文章: more
·配套的直流微型驱动和运动控制器 FAULHABER (8/28/2021)
·转矩、转速、精度三合一. 打破孔径局限,让应用“畅行无阻” FAULHABER (12/10/2020)
·适用于银河系的GPS FAULHABER (11/14/2019)
·多机构同步系统智能控制的实现 广东工业大学冶占武 邹大鹏 司振军 (4/2/2006)
·控制器使电源冗余更为方便 德州仪器 Jim Bird (3/20/2005)
·风扇速度控制器 Maxim北京办事处 Bruce Denmark编 栾成强 译 (3/17/2005)
·数控系统伺服电机控制技术发展动向 广州电器科学研究院 谭建成 (3/13/2005)
·伺服系统特性影响零件加工精度的探讨 西安交通大学 孙建仁 (3/13/2005)
·通用运动控制技术现状、发展及其应用 固高科技(深圳)有限公司 蒋仕龙 (3/13/2005)
·直流有刷伺服电机的简单驱动技术(英文) newmaker (3/6/2005)
查看相关文章目录:
·工业自动化展区 > 伺服与运动控制展厅 > 伺服与运动控制文章
·电力设备展区 > 其它电力设备展厅 > 工业电源 > 其它电力设备文章
文章点评 查看全部点评 投稿 进入贴吧


对 伺服与运动控制 有何见解?请到 伺服与运动控制论坛 畅所欲言吧!


网站简介 | 企业会员服务 | 广告服务 | 服务条款 | English | Showsbee | 会员登录  
© 1999-2024 newmaker.com. 佳工机电网·嘉工科技