佳工机电网 在线工博会 我的佳工网 手机版 English
关键字  
  选择展区 >>
您的位置: 首页 > 工业自动化展区 > 工业机器人展厅 > 产品库 > 技术论文 > 正文 产品库 会展 人才 帮助 | 注册 登录  
工业机器人
 按行业筛选
 按产品筛选
查看本类全部文章
e展厅 产品库 最新动态 技术文章 企业目录 资料下载 视频/样本 反馈/论坛
  技术应用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评 投稿 发表科技文章 
多工步搬运机械手设计
作者:张军 冯志辉
欢迎访问e展厅
展厅
1
工业机器人展厅
大负载机器人, 直角坐标机器人, 机械手, ...
1 引 言

随着工业自动化的普及和发展,控制器的需求量逐年增大。壳体是阀类控制器上使用的通用型零件,该零件结构复杂,加工精度高,工艺过程长,壳体质量一直是影响控制器精度的主要指标之一。由于原有壳体的加工设备陈旧,工艺落后等原因,严重影响了控制器的发展。为了改变落后的生产状态,缓解日趋紧张的供求关系,我们研究开发了多工步搬运机械手。在设备的整体构思,总体布局,机构功能,驱动和控制系统等方面,对原有设备进行了彻底改造,投入运行以来,产品质量稳定,生产率高,工艺成本降低,深受厂家欢迎。

2 工艺过程和总体布局

壳体是用牌号为HPb59-1的有色金属合金,经金属模压铸成型,毛坯精度高。为了满足设计要求,通常首先以壳体外表面为工艺基准,加工壳体端面和定位止口,然后再以止口、端面及外壳凸台为定位基准,加工在壳体圆周上呈幅射状分布的5个径向阶梯孔。径向孔系的加工需要由12个工步完成,其中孔1和孔2的加工过程为:钻孔—攻丝—钻小孔。孔3,孔4和孔5的加工过程为:钻孔—攻丝。多工步搬运机械手是加工壳体径向孔类的专用设备。整机由框架、动力头、机械手、夹具、排屑机构,液压驱动和控制系统等七部分组成,其全部工艺过程和总体布局如图1所示。


图1 工艺过程和总体布局

整机呈口字型框架结构,框架上面的导轨上吊装着13个机械手,下面的工作台面上设有13个辅助定位夹具,其中第3、6、8和10号4个夹具的转位动作由转位液压缸和齿条、齿轮组成的传动副完成。除零号夹具以外,其余12个夹具后面,分别安装有12个呈线性排列的动力头,进行钻孔和攻丝,动力头的进给和后退分别由装在分配轴上的12个凸轮来控制,分配轴的动力由主电机(1.5 kW,1 440 r/min)通过行星摆线减速器带动蜗轮和蜗杆机构提供,各动力头的初始位置可由各自的调整机构来完成。为便于排屑,在动力头和夹具下面设有由计数器控制的排屑电机,经减速后启动传送带进行排屑,可在不停机的情况下,每加工5个工件自动地清理切屑。

3 多工步搬运机械手设计

3.1 结构组成和工作原理

我们设计的多工步搬运机械手是一个直角坐标型式的二自由度机械手,其职能符号和结构,原理如图2所示。


1.连接螺钉 2.升降液压缸 3.弯板,导向螺钉 4.夹紧液压缸
5.抓手 6.铰链 7.工件 8.定位元件 9.垫片 10.球面垫圈
11.连接杆 12.小活塞杆(传力机构) 13.横移缸
图2 职能符号和结构原理图

整机框架的导轨上安装有一个单杆双作用液压缸,缸体固定。与活塞杆连接的滑块上刚性地吊装着13个机械手,当活塞杆运动时,可使13个机械手同步完成左右横移动,机械手的手臂是一个伸缩式复合液压缸,手臂缸的活塞杆是夹紧缸的缸体,夹紧缸的活塞杆作为传力机构驱动以销轴为铰链的内卡钳式4指抓手,完成工件的抓取和释放。为了防止手臂在上升和下降运动中,由于受力不均产生的扭转影响工件的定位精度,在手臂活塞杆上装有导向螺钉,螺钉与端盖上的弯板滑槽配合进行轴向导向。夹紧缸的下端盖的止口端面和外径分别作为工件加工时的第一和第二基准,13个机械手同时完成工件的自定位,夹紧,一起搬运工件进行工序间转换,生产率大为提高。

3.2 机械手的精度设计

机械手的精度设计要求工件定位准确,抓取精度高,重复定位精度和运动稳定性好,并有足够的抓取能力。

由壳体零件的设计要求知道,阶梯径向孔系与壳体端面和定位止口中心线的平行度、垂直度和同轴度均有严格的精度要求(0.1 mm)。设计中我们取动力头回转中心线与夹具中心线之间的同轴度为0.06 mm,动力头回转中心线与机械手中心线之间的垂直度为0.03 mm,同时还对机械手的定位准确性提出了较高的要求。

遵循基准重合原则,加工中以夹紧缸下端盖上的止口端面和外径作为第一和第二基准面分别清除工件的三个自由度和两个自由度,由壳体外端面凸台在夹具中清除第六个自由度。设计中选取夹具的定位元件为锥体结构,保证工件有较高的对中性,并确保工件在夹紧时能很好地进行自定位(工件外面类似球形)。工件径向阶梯孔的周向位置精度由转位夹具予以保证。

工件安装在框架下工作台面的夹具中,机械手吊装在框架上面的滑轨上,每个工件都要经过机械手12次搬运才能完成全部工艺过程,所以机械手的抓取精度在设计中十分重要。影响机械手抓取精度的因素很多,例如:框架上导轨面对框架下部工作台面的平行度T1,夹具中定位元件中心线对工作台面的垂直度T2,机械手的手部中心线对导轨安装面的垂直度T3,机械手的手部中心线和夹具定位元件(略去工件中心线与定位元件中心线之间的同轴度误差)中心线的同轴度即抓手的抓取精度为封闭环T∑,构成如图3所示尺寸链。


图3 尺寸链

设计中我们取抓手抓取精度T∑=0.1 mm,则分配给各组成环的公差为:T1=0.05/220,T2=0.03/130,T3=0.03/400,同时取夹紧缸下端止口定位端面与止口外径的垂直度为0.03mm,取止口定位外径与工件止口内径的配合尺寸44A11/g8,即:孔的尺寸为44A11(+0.48+0.32),外径即相当于轴的尺寸为44g8(-0.009-0.048)则可以计算出最大配合间隙为0.528mm,最小配合间隙为0.329mm,均能满足抓取精度要求。机械手臂部复合液压缸中配合精度的设计,全部参照液压缸的设计要求确定。

由于12个机械手固定吊装在横移缸活塞杆的滑块上,各机械手之间的设计精度取±0.03 mm,横移缸采用传感器和机械挡块作为定位系统,机械手的运动速度不高(<30 cm/s),所以重复定位精度可达±0.02 mm,另外横移液压缸端部由于采用缓冲装置,使机械手运动平稳性也得到了可靠的保证。

机械手的抓取能力可参照钳爪式手部的有关公式,结合机械手的几何参数进行计算。由于壳体重量较轻(≤2 kg),夹紧缸内径d=40 mm,所以在液压驱动系统中有足够大的夹紧力。


4 机械手的驱动系统设计

机械手的驱动系统采用液压方式,它具有在同等输出功率下传动装置体积小、重量轻、运动平稳、动态性能好等特点,13个机械手的左右横移,上升和下降及夹紧和松开等动作及4个自动转位夹具的回转运动,分别采用由方向阀和节流阀控制的18个液压缸驱动,全部执行元件由一个4 kW的6级电动机带动一个流量为24 l/min的单级叶片泵供油,使驱动系统的造价大幅度降低。

5 机械手的PLC控制系统设计

在多工步搬运机械手的控制系统中,我们采用了PLC技术,选用霍尔传感器作为主令检测信号,使用日本立石公司生产的C40P作为控制器主体。

常用PLC梯形图逻辑设计方法较多,设计中我们采用流程图法,按照零件加工过程设计出控制系统流程图。

一般控制系统都是由若干个稳定工作状态组成,每个工作状态是由于接受了某个切换主令信号而建立的。各个工作状态用一个辅助继电器进行区分,辅助继电器的状态由切换主令信号来控制,这些切换主令信号分别来自按钮、传感器、定时器和计数器。辅助继电器同时又是执行元件的输入变量。当控制系统的输入主令信号和执行元件确定以后,将主令信号与各自工作状态的约束条件,分别代入相应的辅助继电器逻辑方程和执行元件的逻辑方程,即可完成自动工作循环的逻辑控制。最后再考虑手动控制系统及自动循环与手动控制之间的互锁要求,即完成了全部控制系统的逻辑设计。

6 结束语

由于多工步搬运机械手主机采用口字型框架结构,13个机械手、夹具、动力头在主机上、下、侧面线性排列,使设备整体结构紧凑,占地面积小,并有条件采用卧式凸轮分配轴机构对动力头进行集中控制,18个液压缸采用一个泵站供油,中间环节少,节省能源,使设备总成本降低。机械手采用自定位夹紧机构配合辅助夹具使工件的定位、夹紧、抓取等动作一并完成,有利于保证产品质量,工艺过程中,13个工步同时进行,13个工件的搬运同步完成,生产节拍协调,生产效率高。尤其是采用PLC控制技术,操作程序变更方便,一旦产品规格型号改变,只要调换分配轴上的凸轮,调节驱动转位夹具的油缸行程,更换夹具定位元件,即能对新产品进行加工,所以,设备在控制器壳体径向孔系加工中具有较大的柔性,利于产品更新。鉴于以上特点,该设备投产以来,不但为生产厂家带来了可观的经济效益,还受到了同行专家们的好评。(end)
文章内容仅供参考 (投稿) (如果您是本文作者,请点击此处) (3/11/2005)
查看更多工业机器人相关文章: more
·新型伺服夹具 - 品种与批量完美结合 多品种、大批量 FAULHABER (6/27/2021)
·人机协作:菲亚特动力科技已与 COMAU 协作将工业 4.0 化为现实 Comau (11/18/2020)
·掌握未来的自动化技术 - 适合机器人的精密驱动装置 FAULHABER (10/26/2020)
·48V 机器人的兴起 安森美半导体公司营销及战略 Ali Husain (2/19/2020)
·公交车部件的激光切割 Mary Kay Morel (3/9/2005)
·62DOF并联机器人修正位置/力控制系统的研究 孔令富 韩佩富 黄真 程从权 (3/6/2005)
·少自由度并联机器人机构的型综合原理 燕山大学 黄真 李秦川 (3/6/2005)
·包装工业机器人技术应用 newmaker (3/2/2005)
·六轴机器人在机床旁的工作岗位 newmaker (1/31/2005)
·机器人解决方案 newmaker (1/31/2005)
查看相关文章目录:
·工业自动化展区 > 工业机器人展厅 > 工业机器人文章
·基础件/通用件展区 > 阀门展厅 > 阀门文章
·刀具/量具/夹具/磨具展区 > 夹具展厅 > 夹具文章
文章点评 查看全部点评 投稿 进入贴吧


对 工业机器人 有何见解?请到 工业机器人论坛 畅所欲言吧!


网站简介 | 企业会员服务 | 广告服务 | 服务条款 | English | Showsbee | 会员登录  
© 1999-2024 newmaker.com. 佳工机电网·嘉工科技