佳工机电网 在线工博会 我的佳工网 手机版 English
关键字  
  选择展区 >>
您的位置: 首页 > 交通运输/海工装备展区 > 汽车电子展厅 > 产品库 > 技术论文 > 正文 产品库 会展 人才 帮助 | 注册 登录  
汽车电子
 按行业筛选
 按产品筛选
查看本类全部文章
e展厅 产品库 最新动态 技术文章 企业目录 资料下载 视频/样本 反馈/论坛
  技术应用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评 投稿 发表科技文章 
车载双通道远端天线LDO/开关的外部元件选择
作者:Andrea Longobardi
欢迎访问e展厅
展厅
2
汽车电子展厅
车灯, 遥控发射器, 汽车娱乐系统, TPMS胎压监测, 汽车防盗器, ...
摘要:本应用笔记帮助系统设计者在使用MAX16948双通道远端天线LDO/开关时选择正确的外部元件,确保车载稳压幻象天线电源和输出电流监测电路满足性能指标。本文提供电子计算器,帮助限定MAX16948的关键外部元件,缩短设计时间。计算器也确定器件的模拟输出电压、输出限流门限,以及输出电流检测精度。计算器包括新的自动逐步向导功能,帮助设计者选择元件。为使用新自动功能,点击相应部分的Step By Step按钮。

引言

MAX16948是一款双通道、高电压、低压差线性稳压器(LDO)/开关,带有输出电流检测功能。器件通过同轴电缆为汽车系统中的远端射频(RF)低噪声放大器(LNA)提供幻象电源,每通道的最大电流达300mA。MAX16948设计工作在4.5V至28V的输入电压范围(45V抛负载容限)。

器件提供8.5V固定稳压输出电压或1V至12V可调稳压输出电压(LDO模式)。器件也可以配置为开关(SW模式)。

MAX16948监测每通道的负载电流,提供两路与检测输出电流成比例的模拟输出电流(从SENSE_1引脚源出)。高精度内部可调电流限值保护输入电源不受过流和短路条件的损害。

器件具有电池短路保护、反向电流检测、输入过压和热过载关断功能,这些故障条件期间,闭锁内部LDO/开关。MAX16948包括两路独立的低电平有效、高压兼容关断输入(SHDN_),可以将每通道置于低功耗关断模式,以及将两路低电平有效开漏错误报警输出(ERR_)。

MAX16948的外部元件

newmaker.com
图1. MAX16948典型应用电路

图1所示为MAX16948的典型应用电路。主要外部元件及其功能如下:

R1_和R2_设置器件处于输出电压可调的LDO模式时的稳压输出电压。
RLIM_设置限流门限。
RSENSE确定ADC满幅输入电压和输出电流检测精度。

利用这些外部元件,用户很容易针对具体应用配置MAX16948。还需要其它外部元件,将在下文中讨论。

输入电容

在IN和GND之间并联电解电容和低ESR陶瓷电容,以限制瞬时输出短路条件期间的输入电压降,以及防止器件受到IN线上电感引起的瞬态损害。例如,如果估算输入电感(包括任何杂散电感)为20μH,使用至少0.1μF陶瓷电容与至少10μF电解电容并联。

MAX16948的工作输入电压接近于输出电压时,例如处于压差下的SW工作模式或LDO模式,必须小心谨慎,避免在对地短路故障时发生错误的反向电流检测。如果两路通道均已使能,其中一路在启动后对地短路,从CIN吸收的电流可能会造成输入电压短时跌落,这可能会触发反向电流检测故障。这种错误故障检测在低输出电流(小于80mA)时更为严重。为避免这种错误触发事件,采用至少100μF的输入电解电容。

LDO模式输出电压

LDO模式下使用时,器件的每个通道可配置为提供8.5V固定输出或1V至12V可调输出电压。通过将FB_引脚连接至REG,将输出电压设置为8.5V。该模式下,由于无需考虑外部电阻的容限,所以输出电压精度较高。

需要不同输出电压时,在OUT_、FB_和GND之间连接电阻分压器。确定电阻分压器值的公式如下所示。

newmaker.com
图2. MAX16948稳压幻象电源

电阻R1_和R2_ (图2)设置MAX16948的输出电压。选择小于或等于1kΩ的R2_标准电阻(R2_(STD))。利用下式计算最优的R1_值:

newmaker.com

式中,VFB_为调节范围内的反馈引脚电压(标称值为1V)。

选定尽量接近R1_的标准电阻2R1_(STD))后,典型输出电压为:

newmaker.com

考虑到电阻容差(RTOL),输出电压的最小和最大值为:

newmaker.com

newmaker.com

式中,VFB_(MIN)为0.97V,VFB_(MAX)为1.03V (输出电流范围为5mA至150mA)。R1_(MIN)、R1_(MAX)、R2_(MIN)和R2_(MAX)分别为R1_和R2_的最小值和最大值:

newmaker.com

newmaker.com

如果标称输出电压相对于预期输出电压的偏离太大,可采用标准电阻的串联或并联组合,实现最优电阻分压器。

将预期输出电压(VOUT_)、R2_的标准值及这些电阻的容差填入MAX16948计算器的对应部分,用户很容易确定R1_的值。计算器确定最优R1_值后,在相应单元中插入标准值,以估算VOUT_范围限值。或者,点击Step By Step按钮,由计算器逐步引导完成LDO模式输出电压部分。

在OUT_和GND之间连接大于> 1μF的电容与0.1μF低ESR (< 900mΩ)电容并联,实现稳压器稳定性。这些电容应尽量靠近器件。使用电介质为X7R的电容,以确保器件的整个工作温度范围内的稳定性。

与输入电容的方式相似,输出电容保护器件不受输出中任何串联电感引起的瞬态损害。在任何条件下,OUT_上的电压都不应低于-0.3V,如数据资料中Absolute Maximum Ratings部分规定。如果预计瞬态会低于地,需要肖特基二极管作箝位,尤其PCB上在负载之前有输出电感时。所选肖特基二极管的正向偏压必须小于0.3V,正向电流等于限流门限。3

限流门限

LIM_引脚电压达到VLIM门限(典型值为2.5V)时,MAX16948限制OUT_的输出电流。从LIM_源出的电流与从OUT_源出的负载电流成比例,比例因子称为电流检测放大器(CSA)增益。这种方式下,限流门限ILIM_由电阻RLIM_设置。

利用下式确定最优RLIM_值:

newmaker.com

式中,ILIM_为预期限流门限,VLIM(TYP)为限制输出电流时LIM_引脚上的典型电压门限(2.5V),A(TYP)为CSA增益典型值(0.005mA/mA)。

选择标准电阻值(RLIM_(STD)),尽量接近RLIM_。那么典型限流门限为:

newmaker.com

考虑到容差不相关性,最坏情况限流门限范围介于以下两个公式之间:

newmaker.com

newmaker.com

式中,VLIM_(MIN)为2.375V,VLIM_(MAX)为2.625V;A(MIN)为0.00485mA/mA,A(MAX)为0.00515mA/mA (典型输出电流100mA);RLIM_(MIN)和RLIM_(MAX)为RLIM_的最小和最大值,基于RTOL的值。

newmaker.com

如果限流门限范围不合适,可采用标准电阻的串联或并联组合,获得最优范围。

MAX16948计算器4通过选择限流门限范围限值(ILIM_(TYP)、ILIM_(MIN)或ILIM_(MAX)),计算RLIM_的最优值,帮助用户选择RLIM_电阻。通过选择ILIM_(TYP)、ILIM_(MIN)或ILIM_(MAX),以及相对限流门限值和RLIM_容限,实现以上目的。计算器确定最优RLIM_值后,在相应单元中插入标准电阻值,以估算ILIM_范围限值。或者,点击Step By Step按钮,由计算器逐步引导完成限流门限部分。

必须将0.1μF补偿电容(CLIM__)与RLIM_并联,以在限流环路中建立主导极点。这样可维持稳定性,并防止快速电流瞬态过早触发限流(图3)。

newmaker.com
图3. MAX16948输出限流。

ADC输入范围和输出电流检测精度

MAX16948源出的电流与OUT_引脚上的负载电流成比例,比例因子为CSA增益。该电流通过RSENSE_,产生与输出电流成比例的电压。利用这一特性,就可能利用ADC采样SENSE_引脚上的电压,从而监测输出电流。

ADC满幅输入电压(VADCFS_)由RSENSE_设置。

利用下式确定最优RSENSE_值:

newmaker.com

式中,ILIM_(TYP)为之前部分计算的典型限流门限,A(TYP)为CSA增益典型值(0.005mA/mA)。

选择标准电阻值(RSENSE_(STD)),尽量接近RSENSE_。那么典型ADC满幅输入电压为:

newmaker.com

考虑到电阻容差(RTOL),ADC满幅输入范围的最小和最大值为:

newmaker.com

newmaker.com

式中,VLIM_(MIN)为2.375V,VLIM_(MAX)为2.625V;RLIM_(MIN)和RLIM_(MAX)已在之前部分计算得到;RSENSE_(MIN)和RSENSE_(MAX)的最小和最大值,基于RTOL值。

newmaker.com

利用电子计算器5的输出电流检测部分,用户在插入相应的ADC满幅输入电压(VADCFS_)和RSENSE_的容差后,很容易确定RSENSE_值。计算器确定最优RSENSE_值后,在相应单元中插入标准值,以估算VADCFS_范围限值。或者,点击Step By Step按钮,由计算器逐步引导完成输出电流检测部分。

然而,使用该部分之前,需要在计算器的限流门限部分确定ILIM_范围限值。

应将0.1μF电容(CSENSE)与RSENSE_并联,以在ADC采样循环期间保持电压(图4)。

newmaker.com
图4. ADC输入范围

利用ADC (VADC_)测得SENSE_引脚上的电压后,可用下式估算输出电流:

newmaker.com

由于RSENSE_容限和CSA增益参数值离散,估算的输出电流值会在以下两个公式之间变化:

newmaker.com

newmaker.com

用100mA典型输出电流代替CSA增益值:

newmaker.com

newmaker.com

最终,ADC测量电流的精度为:

newmaker.com

也可在计算器的输出电流检测部分的O.C.S精度行中确定该参数。

负载开路和过流条件检测

除ADC采样外,通过使用外部比较器以及将RSENSE_分成电阻分压器(R3_、R4_和R5_) (图5),可检测负载开路或过流条件。

newmaker.com
图5. 负载开路和过流检测电路

比较器的输出(OC_和OL_)表示电路的工作状态,如表1所示。

newmaker.com

利用下式确定R5_值:

newmaker.com

式中,IOPEN-LOAD_为通过LDO/开关的预期负载开路电流门限,VOL_,TH为比较器U2_的负载开路电压门限,A(TYP)为CSA增益典型值(0.005mA/mA)。计算得到R5_电阻值后,利用下式确定R4_值:

newmaker.com

式中,IOVERCURRENT_为通过LDO/开关的预期过流门限,必须小于ILIM_(MIN);VOC_,TH为比较器U1_的过流电压门限;A(TYP)为CSA增益典型值(0.005mA/mA)。

最后,计算R3_:

R3_ = RSENSE_ - R4_ - R5_

考虑到R3_、R4_和R5_标准电阻的容差(RTOL),负载开路和过流门限的最小、典型和最大值为:

newmaker.com

式中,A(MIN)为0.00485mA/mA,A(MAX)为0.00515mA/mA (典型输出电流100mA);R4_(MIN)、R4_(MAX)、R5_(MIN)和R5_(MAX)分别为R4_和R5_的最小和最大值,基于RTOL容限。

newmaker.com

用户可利用计算器6的负载开路和过流检测部分确定R4_、R5_和R6_的值。插入IOPEN-LOAD_ (IOL_)、IOVERCURRENT_ (IOC_)、VOL_,TH、VOC_,TH和电阻容限。利用计算器确定R4_、R5_和R6_的最优值后,在相应单元中插入标准电阻值,以估算IOPEN-LOAD_和IOVERCURRENT_范围限值。点击Step By Step按钮,由计算器逐步引导完成负载开路和过流检测部分。

使用计算器的负载开路和过流检测部分之前,需要在输出电流检测部分确定RSENSE_。

计算示例

这些计算例子中,我们假设天线幻象电源应用,电源输入电压为5V,典型负载电流为100mA,最大限流门限值为120mA,采用3.3V输入范围ADC来监测输出电流。

假设MAX16948的IN引脚直接连接至电池,器件必须配置为LDO模式,以获得5V OUT_电压。为此,必须确定R1_和R2_组成的外部电阻分压器。为R2_ (R2_(STD))选择小于或等于1kΩ的标准值,然后计算R1_:

R2_(STD) = 750Ω, RTOL = 1% (E96 Series)

newmaker.com

从E96系列中选择标准电阻(R1_(STD) = 3010Ω),输出电压范围为:

newmaker.com

为使最大限流门限(ILIM_(MAX))等于120mA,可重新整理ILIM_(MAX)公式后计算RLIM_:

newmaker.com

从E96系列中选择标准电阻(RLIM_(STD) = 4530Ω),限流门限范围为:

newmaker.com

ADC输入范围为3.3V时,计算最优RSENSE_如下:

newmaker.com

从E96系列选择标准电阻(RSENSE_(STD) = 6040O, RTOL = 1%),ADC满幅输入电压范围为:

VADCFS_(TYP) = RSENSE_(STD) × ILIM_(TYP) × A(TYP) = 6040Ω × 110.375mA × 0.005 = 3.333V
VADCFS_(MIN) = RSENSE_(MIN) × ILIM_(MIN) × A(MIN) = 5979.6Ω × 100.794mA × 0.00485 = 3.104V
VADCFS_(MAX) = RSENSE_(MAX) × ILIM_(MAX) × A(MAX) = 6100.4Ω × 120.685mA × 0.00515 = 3.571V

那么输出电流监测的精度为:

newmaker.com

(end)
文章内容仅供参考 (投稿) (5/22/2013)
查看更多汽车电子相关文章: more
·挽救生命的传感器:半导体如何改变汽车安全 安森美半导体 Joseph Notaro (10/15/2020)
·助力汽车自我思考 - 诠释GPU和神经网络加速器芯片如何为汽车应用提供智能优势 Bryce Johnstone (1/2/2020)
·利用高度集成的8位MCU简化CAN汽车应用 Edwin Romero (12/19/2019)
·基于SPAD / SiPM技术的激光雷达方案 安森美半导体 (11/19/2019)
·放手的信心 – 图像传感器是ADAS和自动驾驶的关键 Giri Venkat (12/19/2018)
·Speedcore eFPGA在汽车智能化中的应用 Achronix半导体公司 (10/30/2018)
·图像传感器平台将加速汽车安全特性的部署 安森美半导体 Bahman Hadji (10/30/2018)
·精密的先进驾驶辅助系统(ADAS)聚焦于图像传感的功能性安全 安森美半导体 Giri Venkat (10/17/2018)
·在汽车应用中转向USB Type-C™供电 安森美半导体高级产品线经理 Pete Chadbourne (10/17/2018)
·自动驾驶汽车的处理能力 Imagination Technologies汽车应用总监 Bryce Johnstone (9/3/2018)
查看相关文章目录:
·交通运输/海工装备展区 > 汽车电子展厅 > 汽车电子文章
文章点评 查看全部点评 投稿 进入贴吧


对 汽车电子 有何见解?请到 汽车电子论坛 畅所欲言吧!


网站简介 | 企业会员服务 | 广告服务 | 服务条款 | English | Showsbee | 会员登录  
© 1999-2024 newmaker.com. 佳工机电网·嘉工科技