摘要:本文剖析了电动车(EV)与电动车供电设备(EVSE)之间可靠通信所需的标准要求。数据表明G3-PLC系统完全满足汽车和电力行业的通信标准。经过全球各地测试检验的G3-PLC方案是最佳的低频通信方案。
电动车(EV)和插电式混合动力车(PHEV)正在形成一个前所未有、充满活力的移动电能消费类市场,电力提供方(电力公司)和汽车所有者之间的关系也日益清晰。许多电力公司已经或正在计划为EV用户提供特殊的费率标准,包括固定月费率。
EV为电能市场注入了新的活力和需求。实际上,EV与能源提供者之间相互依存的关系已开始形成。由于EV储能容量较大,通常为10kVH,在数小时内需要吸收80A甚至更大的电流。这为电网设备增添了重大压力,特别是对于低压变压器,可能在为用户家庭供电时产生过热甚至发生故障。另外,EV储备的电能也可以产生电流倒灌,向电网输送电能,以解决供电高峰时期的电力需求,避免启动高碳排放的柴油发电机。
为了建立这种新型互动关系,EV和能源提供者必须相互沟通。电力公司必须能够识别每一辆汽车,并且需要通过双向通信进行电能流向、用电量的计量。为满足这一新的市场需求,包括汽车工程师协会(SAE)、国际标准化组织(ISO)和国际电工委员会(IEC)在内的各标准组织,开始着手制定连接EV和充电站(称为电动车供电单元,EVSE)的通信标准。将这种安全、可靠的双向通信能力集成到当前的供电系统,涉及到诸多关键问题。同时,随着EV充电成为一项关键的行业需求,面向智能电网的新标准G3-PLC脱颖而出,成为利用电力线通信管理电网能源的领先技术。
本文分析了可靠的EV-EVSE通信关键要求,数据表明G3-PLC系统完全满足汽车与电力行业的新标准。经过全球各地测试检验的G3-PLC方案是最佳的低频通信方案。
EV-EVSE通信标准
在过去的三年中,汽车厂商已经调研、测试了各种不同的EV-EVSE通信方案。最近,汽车联盟也将其测试结果锁定在两种电力线通信(PLC)解决方案,并将G3-PLC重点作为低频通信选择。一套切实可行的通信方案面临众多挑战,设计人员也在积极探求任何可行性方案。
通信方案需要遵循的关键原则是:
●可靠性——可靠的数据通信和满足汽车级要求的部件
●满足EMC、联合干扰及串扰限制
●符合全球范围的电力线规范
●通过控制线工作
●工作在交流或直流电网
●对能源管理系统提供安全的联网支持
此外,汽车解决方案为IC设计者和制造商带来了特殊挑战。IC必须能够承受恶劣的工作环境,必须可靠工作10到20年,满足汽车的相关认证/质量保证体系要求。
G3-PLC——EV-EVSE通信技术的最佳选择
一段时间以来,在汽车行业调研的同时,电力行业也在开发使用寿命长达10年之久的高可靠性G3-PLC方案。这些成果已经得到世界最大电力公司的支持,包括法国电力集团(EDF)。目前已经推出G3-PLC电力线调制解调器,可以工作在负信噪比(SNR)的恶劣环境下。无论怎样强调G3-PLC技术的重要性都不为过,它已成为确保任何EV-EVSE条件下可靠通信的关键。
美国能源部2009年资助的独立直流充电试验结果证明了EV-EVSE通信所面临的困难,测试结果显示Maxim的G3-PLC电力线调制解调器具有高度可靠的通信能力,能够适应任何工作条件。
强噪声充电电缆
大多数独立的PLC方案都工作在较低电流,G3-PLC是唯一能够在250A下实现可靠通信的PLC系统。测试数据(图1)显示,噪声可能比信号强20dB,甚至更高;此外,开关电源所产生的噪声频率也不相同,取决于具体使用的开关电源。G3-PLC系统采用专有技术应对恶劣的环境条件,包括可靠工作模式(robo模式)、自适应频率映射、两级纠错和二维梳状滤波等。这些功能在IEEE ISPLC文献中有详细介绍并经过现场测试验证,G3-PLC能够跨变压器实现可靠的数据通信。
图1. 用于测试G3-PLC工作状况的250A直流充电器频谱 EMC抑制
在G3-PLC收发器推出之前,电磁兼容性(EMC)一直是困扰PLC用于户外通信的主要障碍。然而,由于G3-PLC系统工作在较低频率(500kHz以下),并且针对全球的智能电网设计,克服了EMC这一难题。实际上,初步试验已经显示在低频带(500kHz),EMC水平低于CISPR-25的限制门限,随后的大量试验也证明了这一点。
联合干扰与串扰
通常情况下,充电站会对平行排列的多台电动车充电,一旦发生通信误码,将会造成计费错误。因此,联合干扰和串扰成为EV-EVSE网络主要关心指标。汽车行业最初考虑在这一应用中采用无线通信方案,但事实证明这一方案无法保证可靠的联合充电。
PLC确保为正在充电的EV正确计费,采用G3-PLC技术解决这一问题。EVSE开关断开时,无法进行通信(图2),保证在具有多条充电线路的EVSE中无法通过开路触点通信或在充电线路之间通信。这一功能在新近的ISO 15118 PT4试验中得到了进一步证实,试验中将G3-PLC信号增大到正常工作水平的10倍,以引入串扰。在标称条件乃至更嘈杂的工作条件下,未检测到串扰。
图2. 采用G3-PLC时,发送和接收信号表明开路触点之间没有通信数据 全球化方案是汽车制造商的关键目标,G3-PLC系统已经在全球多个地区经过广泛测试,工作在10kHz至500kHz各国授权的许可频带。为了支持许可频带的地区差异,Maxim G3-PLC方案提供可编程功能,以满足部署区域的规定。由此,欧洲电力公司的试验中,将G3-PLC系统编程在CENELEC A波段(最高95kHz);美国测试中,则将G3-PLC设置在FCC频带(最高490kHz),日本则设置在ARIB频带(最高450kHz)。
工作于控制线
工作在控制线时,G3-PLC收发器需要克服更多的设计挑战。为了满足SAE J1772规范,工作在控制线时需要注意两个关键因素:超低电压与耦合问题,以避免PWM干扰。考虑到G3-PLC系统的坚固特性,工作在低压(及小电流)条件不成问题。图3表明,可正常工作在500mV以下,不会出现丢包,也无需重发。
图3. 控制线上电感耦合的G3-PLC信号波形,表明其支持PWM和PLC通信 另外,还须注意避免PWM信号过载(对摆率造成不利影响),并避免来自1kHz、12V信号的PWM谐波。为确保PWM信号频带与G3-PLC传输频带不发生重叠,G3-PLC系统设置工作在150kHz以上。为确保PWM摆率在系统限值的范围内,优先考虑电感耦合(优于电容耦合)。
多功能性带来更多可能
G3-PLC方案作为交流电源方案已经在全球范围的众多电力公司进行广泛测试。SAE赞助进行的试验结果表明:G3-PLC系统能够以零误码发送数千万条汽车用电数据。由于G3-PLC系统可工作在加电和非加电线路(交流电网、控制线、CAN或任何介质),能够提供值得信赖的可靠性保障。
G3-PLC方案对高级电表基础架构(AMI)非常重视,为交流电网上的EV-EVSE通信开启了一扇新的大门:G3-PLC系统能够与电表直接通信。图4所示为G3-PLC能够支持的完备生态系统。预计家庭中的EVSE将具有独立、专用的断路器,提供与外部电源断路器的直接通路,避免相差的影响。
图4. EV至电力公司的G3-PLC通信路由 部分电力公司在汽车厂商提出要求之前已经为G3-PLC系统增加了IPv6寻址。实际上,正如Stephen Shankland在ZDNet发表的文章所述,IPv4地址几乎已经耗尽,所以支持IPv6成为当务之急。G3-PLC方案采用6LowPAN压缩方案,确保支持真正的IPv6寻址。G3-PLC采用真正的IPv6组网后,PHY和MAC不确定能源管理的解决方案能够在网络上无缝切换。
最终方案
汽车厂商在EV-EVSE通信方案的实施过程中面临着诸多挑战,我们的低频通信技术能够使这些问题迎刃而解。MAX2992电力线收发器G3-PLC系统是久经考验、在全球范围进行过多项测试和验证的可靠方案。MAX2992已经量产,满足汽车级要求,符合即将实施的EV-EVSE通信规范SAE J2931/3 PLC。器件也兼容于即将颁布的IEEE 1901.2规范。
参考
可从以下网址下载ISPLC 2010会议的G3-PLC资料:http://ewh.ieee.org/conf/isplc/2010/KeynoteAndPanelFiles/9-40-KAVEH.pdf。
可从以下网址阅读Stephen Shankland在ZDNet发表的文章Time Running Out for IPv4:www.zdnet.com.au/time-running-out-for-ipv4-339308822.htm。(end)
|