佳工机电网 在线工博会 我的佳工网 手机版 English
关键字  
  选择展区 >>
您的位置: 首页 > 交通运输/海工装备展区 > 铁路与轨道交通展厅 > 产品库 > 技术论文 > 正文 产品库 会展 人才 帮助 | 注册 登录  
铁路与轨道交通
 按行业筛选
 按产品筛选
查看本类全部文章
e展厅 产品库 最新动态 技术文章 企业目录 资料下载 视频/样本 反馈/论坛
  技术应用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评 投稿 发表科技文章 
Savings for highway heavyweights
作者:John Toon
欢迎访问e展厅
展厅
6
铁路与轨道交通展厅
铁路养护工具, ...
Flow control techniques and aerodynamic improvements developed at the Georgia Institute of Technology could save the US trucking industry hundreds of millions of gallons of fuel per year.

Aerodynamic improvements on truck trailers, such as rounded corners, coupled with pneumatic controls for blowing air from slots, help reduce drag and improve fuel economy for heavy trucks. Recent tests done using a full-size tractor-trailer truck show the techniques could increase fuel economy by as much as 11 to 12 percent. The improvements could also enhance braking and directional control.

"At highway speeds, each one percent improvement in fuel economy results in saving of about 200 million gallons of fuel for the US heavy truck fleet," said Robert Englar, principal research engineer in the Aerospace, Transportation and Advanced Systems Laboratory of the Georgia Tech Research Institute (GTRI).

The aerodynamic improvements produced by geometry changes, which generate fuel savings of as much as six to seven percent, involve rounding aft trailer corners, installing fairings and making other changes that smooth air flow over the boxy trailers. Fuel savings of an additional five percent come from pneumatic devices that blow air from slots at the rear of the trailer to further improve and prevent separation of air flow.

Supported by the US Department of Energy, the project began in the late 1990s with tests of simple scale model tractor-trailers in GTRI's low-speed wind tunnel. Those studies suggested the possibility of fuel savings based on these simple models, but in the first tests on a full-scale truck, the results fell short of expectations. Consequently, the researchers went back to their wind tunnel with more realistic truck models to study lessons learned from the first test.

Working with Volvo Trucks of North America and Great Dane Trailers - manufacturers of the basic tractor and trailer respectively - Englar's research team and Smyrna prototype shop Novatek installed a new set of aerodynamic features and revised the blowing system at the rear of the trailer. A series of higher-speed test runs at the Transportation Research Center's Ohio fuel-economy test track in September 2004 then demonstrated the real fuel savings that had been expected.

The tests involved operating a blowing-equipped test tractor-trailer for several different 45-mile runs around a 7.5-mile oval at highway speeds of 65 and 75 miles per hour. A control truck that did not have the aerodynamic improvements or pneumatic control system was operated under the same conditions to provide a comparison. For additional comparisons, the test truck was also run without the experimental blowing equipment.

Before the pneumatic control system can be widely used in trucks, however, researchers will have to choose the best source of compressed air for the blowing system, Englar notes. Options include a diesel-powered motor installed in the trailer like current refrigeration units, bleeding pressurised air from the truck's supercharger, or a simple chain drive to turn air blowers from the trailer's wheels.

Aerodynamic drag becomes dominant only at higher speeds, so the blowing would be turned off when the trucks were idling or operating at low speeds, Englar said.

To fully assess the energy savings, the researchers will have to accurately account for the power needed by the blowing system, which will cut into the fuel savings. Other practical issues, such as protecting the pneumatic surfaces from damage during docking, still must be resolved, though that effort is already underway.

Beyond boosting fuel efficiency, the pneumatic system can also provide a form of aerodynamic braking to assist the mechanical brakes. "Using the pneumatic systems, you can turn a low-drag configuration into a high-drag configuration in a very rapidly, giving you a lot more braking power," Englar said.

Differential blowing could also improve control of trailers in crosswinds by helping compensate for the wind direction. "This would allow you to have the blown equivalent of an airplane rudder on the trailer, without any physical additions," he explained. "Beyond increasing fuel efficiency, the pneumatic system could be a drag reducer, drag increaser, safety factor and a stabilising device."(end)
文章内容仅供参考 (投稿) (1/11/2005)
查看更多铁路与轨道交通相关文章: more
·万可连接中国铁路的高速未来,绝对keep real! WAGO (8/22/2018)
·用MasterCAM 进行整体车轮幅面车削程序设计 洛阳机车厂 王军 (12/22/2004)
·案例分析:铁路货车产品开发并行工程 徐国明 李福 (12/11/2004)
·磁悬浮技术的应用现状与展望 长安大学 张士勇 (12/3/2004)
·智能液压起拨道机的设计 中南大学 吴湘华 应立军 (11/18/2004)
·一种多路电源智能控制系统的研究与应用 北京交通大学 张伟 李杏春 王占国 (11/16/2004)
·列车、飞机用热塑性工程塑料 西安富莱明实业有限公司 党小冬 (11/4/2004)
·提速车焊接转向架焊缝TIG重熔工艺的研究 戚机所 孙周明 张连华 陈善忠 李旭 (10/24/2004)
·CAM技术在铁路货车模具生产中的应用 齐齐哈尔铁路车辆公司 尹学文 (9/27/2004)
·过盈配合应力的接触非线性有限元分析 许小强 赵洪伦 (9/17/2004)
查看相关文章目录:
·交通运输/海工装备展区 > 铁路与轨道交通展厅 > 铁路与轨道交通文章
文章点评 查看全部点评 投稿 进入贴吧


对 铁路与轨道交通 有何见解?请到 铁路与轨道交通论坛 畅所欲言吧!


网站简介 | 企业会员服务 | 广告服务 | 服务条款 | English | Showsbee | 会员登录  
© 1999-2024 newmaker.com. 佳工机电网·嘉工科技