管材/管件/法兰 |
|
| 按行业筛选 |
|
|
| 按产品筛选 |
|
|
| |
查看本类全部文章 |
| |
|
|
|
金属波纹管的主要技术参数 |
|
newmaker |
|
金属波纹管及其它弹性元件的技术参数可分为以下两类
功能参数
它们是金属波纹管类弹性元件的主要功能指标,是判定波纹管类组件能否应用的重要判据。这类参数除给定一个额定值外,还要给定一个允差范围(界限值),以保证弹性元件使用的可靠性。
质量参数
在金属波纹管类组件使用时并不涉及此类参数,只有在弹性元件性能检测与质量评定时才直接测量这些参数。根据测试结果,来判定元件的功能、质量、失效性和可靠程度。
金属波纹管及其它弹性元件的功能参数
载荷、公称载荷和超载载荷
载荷
作用在金属波纹管及其它弹性元件上的各种预期的负荷值,如集中力F、压力p 和力矩M 等。在金属波纹管类弹性元件使用时,除给定施加的载荷值外,还须给定载荷的作用方向及作用位置。对于压力载荷,还要说明弹性元件是承受内腔压力或外腔压力。
公称载荷
金属波纹管及其它弹性元件在正常工作条件下允许使用的最大载荷值或满量程值。它通常是预期的设计值,或是对产品原型经过实际检测后再经修定的设计值。
超载载荷
具体弹性元件产品在工作中经受瞬间或试验期间允许超过额定载荷而不发生损坏、失效、失稳时的承载能力。对于仪表弹性敏感元件,一般限定超载能力为额定载荷的125%。在工程中使用的波纹管类组件,一般限定在额定载荷的150%。根据工程要求,当要求大的安全系数时,使用的弹性元件规定不允许有任何超载,因此载荷必须小于或等于额定载荷值。
位移、额定位移和超载位移
位移
金属波纹管及弹性元件中某一特定点(自由端或中心)的位置变化。按照其运动轨迹,可分为线位移和角位移。在外界载荷作用下,金属波纹管可能产生轴向位移、角向位侈及横向位移。
额定位移
金属波纹管及弹性元件在额定载荷作用下所引起的位移值,也就是它们在正常使用条件下允许产生的工作位移。
超载位移
各类弹性元件在工作瞬间或试验期间允许超过额定位移的承受能力。在发生超载位移时,弹性元件不应发生损坏、失效、失稳等情况。对于仪表弹性敏感元件,超载位移一般限定在额定位移的125%,工程中使用的波纹管类组件,应根据工程条件和安全程度确定。
弹性特性
金属波纹管及其它弹性元件在某一指定煮上的位移与作用载荷之间的关系称为弹性特性,而位移和载荷都应存元件材料的弹性范围内波纹管类组件的弹性特性可以用函数方程、表格与曲线图等形式表示。其弹性特性取决于各类弹性元件的结构及加载方式。元件的弹性特性可以是线性的或非线性的,非线性还可分为递增特性和递减特性两种。
弹性特性是波纹管及其它弹性元件的一个主要性能指标。仪器仪表和测量装置中使用的弹性元件,在设计时一般总是力求使元件的输出量与被测参数(载荷)之间呈线性关系。这样可以采用较简单的传动放大机构实现仪表的等分刻度。
刚度、公称刚度和刚度允差
刚度
使金属波纹管或其它弹性元件产生单位位移所需要的载荷值称为元件的刚度,一般用“K”表示。如果元件的弹性特性是非线性的,则刚度不再是常数,而是随着载荷的增大发生变化。
公称刚度
弹性元件设计计算时给出的刚度称为公称(或额定)刚度.它与元件的实测刚度有误差,特别是具有非线性弹性特性的弹性元件。公称刚度代表的是曲线上哪一点的刚度,则要仔细考虑。一般来讲,公称刚度最好不要直接采用设计计算值,而是应该用产品原型经过测试后的修正值。
刚度允差
对一批弹性元件测试时刚度允许的分散范围。对同批弹性元件,每一个元件的刚度均不尽相同,有一个分散范围。为了保证元件的使用性能,就必须对刚度分散范围有一个限定。对弹性敏感元件,其刚度允差要求限定在公称值的+/-5%以内;一般工程用的波纹管类弹性元件,刚度允差可限定在+/-50%之内。
灵敏度
金属波纹管及其它弹性元件承受单位载荷时所产件的位侈量称为元件的灵敏度。刚度和灵敏度是波纹管及其它弹性元件的主要功能参数,但它们又是同一使用特性的两种不同的表示方法。对于不同的场合,为便于分析问题,可采用其中任何一种参数。
有效面积
对于实现压力一力或力一压力转换的弹性元件,还有一个重要的功能指标是有效面积。有效面积是指弹性元件在单位压力作用下,当其位移为零时所能转换成集中力的大小。
使用寿命
弹性元件下作时有两种状态;一种是在一定的载荷和位移情况下工作,并保持载荷、位移始终不变或很少变化,称为静态工作;另一种使用情况是载荷和位移不断周期往复交替变化.元件处于循环工作状态。由于工作状态的不同,元件损坏或失效的模式也不同。仪表弹性敏感元件工作在弹性范围内,基本上处于静态工作状态,使用寿命很长,一般达到数万次到数十万次。工程中应用的波纹管类组件,有时工作在弹塑性范围或交变应力状态,寿命只有成百上干次。元件在循环工作时必须给定许用工作寿命,规定循环次数、时间和频率。
弹性元件的额定寿命是元件设计时定出的预期使用寿命,要求在这段期间内元件不允许出现疲劳、损坏或失效等现象。
弹性元件的密封性
密封性是指元件在一定的内、外压差作用下保证不泄漏的性能。波纹管类组件工作时,内腔充有气体或液体介质,并有一定的压力,因此必须保证密封性。密封性的检测方法有气压密封性试验、渗漏试验、液体加压试验、用氦质谱检漏仪检测等。
弹性元件的自振频率
在工业中使用的弹性元件,其工作环境往往都有一定程度的振动,有些元件用作隔振部件.本身就处在振动条件下。对于在特殊条件下应用的弹性元件,必须防止元件的自振频率(特别是基频)与系统中任何一种振动源振频相近,避免发生共振而引起损坏。波纹管类组件在各种领域中得到了广泛的应用,为避免波纹管发生共振面损坏,波纹管的固有频率应低于系统的振动频率,或至少比系统振频高出50%。
使用温度范围
金属波纹管类组件的使用温度范围很宽,一般都在弹性元件设计制造前给出。有些特殊用途的波纹管,内腔通过液氧(-196℃)或更低温度的液氮,耐压高达25MPa 。管网系统连接用的大型波纹膨胀节(公称直径有时超过lm ),要求承压4MPa,耐温400℃,且有一定的耐腐蚀稳定性。弹性元件的温度适应能力取决于所采用弹性材料的耐温性能。因此根据弹性元件的使用温度范围,选用合适温度性能参数的弹性材料,才能加工制造出合格的波纹管类组件。
金属波纹管及其它弹性元件的质量参数
非线性、非线性度
当弹性元件产生的位移与作用载荷的关晰系偏离了理想的直线.就称该元件特性为非线性的。
非线性度是一个系统误差,经过测试分析后是可以被确知的。对于在工程技术中应用的波纹管类组件,其特性的非线性可以被忽略。但对仪器仪表用弹性敏感元件,必须对元件的非线性进行测试和补偿,才能提高仪表或变送器的检测精度。
弹性迟滞与弹性后效
由于弹性材料的微观结构缺陷等原因,元件的特性会表现出滞后性,产生弹性迟滞和弹性后效。
弹性迟滞
弹性元件在加载和卸载过程中,弹性特性曲线不相重合的现象称为弹性迟滞。
弹性后效
当载荷停止变动或完全卸载后,弹性元件不是立即完成相应的位移.而是要经过一段时间后才能逐渐回复的现象称为弹性后效。
实际上,弹性迟滞和弹性后效是同时发生的,它们无法区分,因此得到的是两者迭加后的实际滞后回线。一般情况下不作单独考虑,统称为元件的弹性滞后及滞后百分率。
残余变形
金属波纹管及其它弹性元件的残余变形是指加载后元件产生位移,而卸载后再经过相当长的一段时间弹性元件仍不能回复到原始位置.产生一个永久变形的残留值。元件的残余变形里与使用状态有关。当拉伸(或压缩)的位移里逐渐增大到一定的位移值后,残余变形将显著增加。
残余变形是判定弹性元件变形能力的参数对于弹性敏感元件,如果在达到额定位移值后产生了较大的残余位移,这将影响仪表的测量精度。因此.一般对残余变形量给出一定的界限值。在工程中应用的波纹管类组件(如波纹膨胀节),有时为得到较大的位移,使元件工作在弹塑性区,会出现较大的残余变形。如能满足一定的使用寿命而不失效.这时残余变形量不再考虑。
热弹性效应
当工作温度发生变化时,弹性元件的几何尺寸和材料的弹性模量也会随之变化,从而引起温度误差。
失稳
弹性元件(如跳跃膜片、螺旋弹簧、波纹管等)在载荷F 或p 作用下会发生失稳现象。波纹管的失稳有平面失稳和柱失稳两种情况。平面失稳是指波纹环板平面翘曲、变形、波距不均匀等:柱失稳是波纹瞥轴线总体弯曲,偏离原来的直线位置.不论是哪一种失稳,都是发生了波纹管的几何形状失去原有平衡状态,产生形状突然畸变的现象,失稳发生的瞬间元件所承受的应力常常并未达到材料的屈服强度,甚至有时小于弹性极限。除了跳跃膜片是利用元件的失稳现象制成的一种两位式开关器件外,其它弹性元件使用时,都应避免失稳产生。防止元件失稳的措施有:元件设计时应避免元件过长过薄;长波纹管在使用时应采用心轴或拉杆保护;弹性元件承载时,载荷应加在元件的书合位置,防止载荷偏斜。(end)
|
|
文章内容仅供参考
(投稿)
(如果您是本文作者,请点击此处)
(1/15/2011) |
对 管材/管件/法兰 有何见解?请到 管材/管件/法兰论坛 畅所欲言吧!
|