电池/开关电源 |
|
| 按行业筛选 |
|
|
| 按产品筛选 |
|
|
| |
查看本类全部文章 |
| |
|
|
|
获取较高的低压输出精度小技巧 |
|
作者:德州仪器(TI)公司 Robert Kollman |
|
输出电压在不断下降,而稳压要求却变得越来越高,对于设计者来说,适当的小技巧可以使任务不像其表面看起来那么难。即使必须要使用1%或更大的容差电阻来进行设计,我们仍然可以得到非常精确的输出电压。
图1显示了一款典型的电源调节电路。输出被分流降压,并与参考电压进行比较。差异被放大,并用于驱动调节环路。乍一看,您可能会认为这一方案仅限于两倍电阻容差精度。幸运的是,实际并非如此;精度还是输出电压与参考电压之比的强函数。
图1:输出精度是分压器比、基准精度和误差放大器补偿的函数 三种不同的情况可以非常容易地说明这一比率。第一种情况是假设一点分压也没有,换句话就是说输出电压等于参考电压。很明显,这种情况下没有电阻分压误差。第二种情况是假设输出电压大大高于参考电压。在这种情况下,R1大于R2。分压器误差是电阻容差的两倍,从而得到一个方向变化的R1值,以及往另一个方向变化的R2值。第三种易于说明的情况是假设输出电压是参考电压的两倍。在这种情况下,额定电阻值相等。因此,如果电阻容差以反方向变化,则分压器方程式顶部随着该容差值变化,而分母变为零。
图2显示了输出精度,其为参考电压与输出电压对比关系的函数。简化之后,分压器精度为(1-Vref/Vout) X2X容差,其与我们通过检查得到的三个数据点相关。我们对该方程式进行了一些简化处理,但对大多数电阻容差来说都应该足够精确。
图2:输出精度很直观:(1-Vref/Vout)X2X容差(显示的1%电阻)。 有趣的是,这样给低压输出带来了更高的精度。许多IC参考电压范围为0.6~1.25 V之间,输出电压降至这一范围时会带来1%或更高的精度。表1给出了您可能需要了解的一些信息,这些信息是典型电阻器产品说明书的电阻误差术语汇编。在设计中,该列表会较难理解。大多数工程师都止步于初始容差,然而列表中还有一些或许不应被忽略的误差项。表格中的每一项都有其微妙的影响。例如,没有指定具体的温度系数范围,而实际上两个电阻都可能随温度变化以相同方向变化,并且不会在相反的极端。在对一些经验丰富的设计工程师进行简单调查后,得出的结论是假设1%容差电阻的2.5%精度可在极端情况和合理成本之间得到一个合理的折衷方案。表1:电阻容差可相加
总之,提供较好的低压输出精度并非是一项令人畏惧的任务,因为低分压器比本身就较为精确。(end)
|
|
文章内容仅供参考
(投稿)
(10/11/2010) |
对 电池/开关电源 有何见解?请到 电池/开关电源论坛 畅所欲言吧!
|