变频器 |
|
| 按行业筛选 |
|
|
| 按产品筛选 |
|
|
| |
查看本类全部文章 |
| |
|
|
|
TD3300变频器在浆纱机卷绕张力控制中的闭环应用 |
|
作者:长沙时捷电气有限公司 |
|
在各种专业期刊杂志上,对艾默生TD3300变频器在纺织、造纸、冶金生产中的张力控制应用案例介绍得比较多,但多为张力开环控制方案,对张力闭环控制方案介绍倒不多。本文以浆纱机收卷张力控制为例,采用TD3300变频器的张力闭环控制方案,介绍在张力闭环控制调试过程中的调试步骤及注意事项。
关键词:变频器;浆纱机;张力闭环
1 前言
某棉纺厂使用1999年郑纺机开发生产的ZGA-203双浆槽浆纱机,可对1600支头的低支棉到9000支头的高支棉、张力从800N到3000N的多种纱线进行浆纱,该设备属当时国产同类设备中的先进产品。
该设备原传动方案采用的是单变频+机械无级调速,即通过台达VDF-A变频器(18.5KW)调节主牵引电机(15KW)的转速,主牵引电机再通过4个机械无级调速器(可人工微调机械变比)到其他各自传动点,形成速度链,以保持各区间张力。而收卷部分则由主电机带动气动机械无级调速器,通过人工调节气压来调节卷取张力,并自动稳定收卷张力。
但该设备在使用一段时间后陆续出现不少问题,主要是收卷部分的气动机械无级调速器极易磨损,引起收卷张力不稳定,要么纱线张力过小导致卷曲,要么纱线张力过大导致断裂,同时该部分的维修费时又费力,严重影响了后续织布的产量和质量。
美国艾默生公司推出的TD3300系列张力控制专用变频器,内部具有卷径计算模块,能够自动计算卷径变化,可独立构成张力控制系统,完成开环、闭环恒张力控制;同时该系列变频器具有张力锥度控制功能,可保证收卷后各层形状均匀,极大地提高了张力控制的精度和速度,提高了生产效率。经过我公司的推荐,该棉纺厂最终决定使用艾默生TD3300张力控制专用变频器对浆纱机的收卷部分进行改造。
图一 浆纱机简图 2 控制方案
2.1控制要求
变比 : 11.73
卷径范围 : 110mm---780mm
速度调节范围 : 3m/min----60m/min
张力调节范围 : 800N----3000N
收卷线速度保持与主线速度同步且可调,在收卷恒速、调速及启、停(收卷中途15KW主电机暂停,便于处理问题)过程中须保持收卷纱线的张力恒定。
2.2控制方案及电机选择
我们知道TD3300变频器张力控制有张力开环转矩模式、张力闭环速度模式和张力闭环转矩模式三种控制模式。张力开环转矩模式具有不需安装张力传感器,同时可以节约张力传感器成本的优势,被广泛应用于张力控制要求不高的场合。但要求电机的最小输出转矩最好控制在电机额定转矩的10%以上。
由于不同纱线产品要求控制的张力差别较大,在选择电机时我们须按最大卷径和最大张力给定值来计算电机的额定输出转矩 (转矩指令公式T=F × D / 2 × i)
T : 为变频器的输出转矩指令;
F: 为张力设定指令;
D: 为卷筒的卷径;
I: 为机械传动比)
T=(3000 ×0.78) / (2 × 11.73)=100 N
另通过计算变频器运行频率在0.3 HZ----67.2 HZ,收卷电机最好使用变频电机,以保证电机的安全使用。因此收卷电机选择22KW四极变频电机(额定转矩140N),收卷变频器选择 TD3300-4T0220G。
那么电机的最小输出转矩则按最小卷径和最小张力给定值来计算:
T=(800 ×0.11) / (2 × 11.73)=3.78 N
如果我们选择张力开环转矩模式,那么要求电机的最小输出转矩只有电机额定输出转矩的2.7%( 3.78N/140N),远低于10%的要求,这样我们在生产小张力纱线时,要保证小卷径的收卷张力恒定是很困难的。也就是说在作张力控制时既要求张力恒定,又要求张力可调范围要大,使用张力开环转矩模式是很难达到控制要求的。
那么控制方案只能选择张力闭环模式,张力闭环模式又分张力闭环速度模式和张力闭环转矩模式。张力闭环速度模式虽对PID参数有一定的依赖性,但相对于张力闭环转矩模式而言,调试要相对简单,且完全能达到控制要求。因此本控制方案采用张力闭环速度模式,在收卷辊和压纱辊之间增加张力传感器(24V DC电源、4---20mA电流信号输出)、张力辊和角度辊(如图虚线部分),通过张力传感器的信号反馈实现张力闭环控制,从而达到收卷张力恒定的目的。
据了解,郑纺机后期的升级产品中收卷部分也使用的是张力闭环方案。
注意 :我们要保证在大卷径、大张力、低速或零速时电机有足够输出转矩,以防止电机在低速和零速时转矩不够,引起的收卷辊回车,TD3300应设置为闭环矢量控制模式,提高电机低频输出转矩。这样我们也需在电机上加装旋转编码器(光洋、1024线输出)。
2.2 浆纱机的张力控制原理图 3收卷变频器的调试步骤
3.1 初步检查变频器和电机参数。
电机铭牌:
额定功率: 22kw,
额定电压: 380V,
额定频率: 50Hz,
额定电流: 42.6A,
额定转速: 1470rpm.
3.2 完成变频器电机参数自辨识
在键盘控制模式下输入电机铭牌参数;
设定F1.09=1,允许自动调谐;
然后设定F1.10=1,启动电机调谐,进行调谐,得到电机参数(祥见《TD3000高性能矢量控制变频器用户手册》);
调谐完成后,重点检查变频器辨识出的电机的空载电流,电机空载电流正常应在电机额定电流的30%~50%范围内。F1.16为18.6A,在正常范围内。
3.3 初步测试变频器对电机的驱动能力和旋转编码器的接线
旋转编码器:光洋1024线输出,供电电压24VDC,推挽输出。
TD3300变频器应在(FB编码器功能项)设置编码器的参数(FB.00=1024),在键盘控制模式测试变频器对电机的驱动能力,重点观测变频器的输出频率的稳定性和输出电流的大小,注意监视TD3300变频器此时的输出电流,若在空载的情况下,输出电流偏大并且报过流故障,应该是旋转编码器的接线有误,更换接线或更改变频器内PG接线的方向设定(功能码FB.01)。
3.4 完成TD3300的信号连接
连接VDF-A变频器模拟输出口AFM、ACM(设模拟输出量对应变频器的输出频率)到TD3300变频器模拟输入端AI3、GND,完成相关参数(F6.02=0,F6.05=1.0)设置,作为TD3300的速度同步控制信号。
连接VDF-A变频器继电器输出端子RA、RC到TD3300变频器的FWD、COM端子,作为TD3300的运行控制信号。
连接张力传感器(外接24V电源)的输出信号到TD3300变频器接口板AI2,并置V/I端口的跳线在I侧,完成相关参数( F6.01=4,F6.04=1.0)设置。
3.5 设置TD3300变频器的相关运行参数,初步带载试运行。
F0.02=1, 闭环矢量,如果设为开环矢量,有回车现象;
F0.05=1, 端子控制;
F0.07=110,最大频率;
F0.08=110,上限频率;
F0.10=0.01,加速时间;
F0.11=0.01,减速时间;
F1.00=11.73,设备厂家提供的收卷电机与收卷卷轴的转速比;
F3.06=1,闭环张力控制模式1;
F5.00(控制模式)=2,三线模式;
F5.03(多功能端子X1)=12,卷径复位1指令;
F5.03(多功能端子X2)=1,预驱动,在人工换卷伸头时切换X2到ON,保持收卷线速度与主速度同步,防止意外;
F5.03(多功能端子X3)=16,三线运行控制,接原控制系统离合器松按钮常闭;
F6.02=4,4---20ma张力传感器反馈 电流;
F7.02=1,反馈选择AI2;
F7.03=7.5,比例增益P1,多次调试后的最终值;
F7.04=6.8,积分时间Ti1,多次调试后的最终值;
F7.05=0.65,微分时间Td1,多次调试后的最终值;
F7.06=11.0,比例增益P2,多次调试后的最终值;
F7.07=99.99,积分时间Ti2,多次调试后的最终值;
F7.08=0.25,微分时间Td2,多次调试后的最终值;
PID参数调试是一个细致认真的过程,须多次反复调试才能满足要求。(注意:如未加卷径计算功能,调试时需人工设定F8.16相对应的当前卷径)
两套PID参数的最终值差异较大,主要是因为PID1用于提高低速时的快速跟踪和响应,PID2用于保持高速时的运行平稳。
F7.10=2,PID参数调整依据 ,线速度;
最终把PID参数调整依据 F7.10设为2,是因为线速度变化的范围(3---60m/min, 30倍)相对于卷径变化的范围(110---780mm, 7倍)要大得多, 且收卷张力受速度变化的影响也要大些。
F8.01=1,AI1设定;
F8.03=5000,根据现场调试情况修改,满足张力设定电位器的调整要求;
F8.06=1, 张力锥度系数;
F8.07=10, 根据现场调试情况修改 ;
F8.08=0, 初步设定卷径不计算,保证初步测试时张力的稳定;
F8.09=780,设备厂家提供,建议比厂家提供的数值稍大一些;
F8.10=110,设备厂家提供,空芯卷轴的直径;
F8.12=110,卷径复位用,与F5.01(多功能端子X1)=12,卷径复位1指令配合使用;
3.6 加卷径计算功能,带载运行
F8.08=1,设定卷径来源选择线速度计算法,启动卷径计算模块;
FC.00=3,AI3设定,来自主牵引变频器VDF-A的AFM(运行频率)口的输出。
FC.03=60m/min,设备厂家提供,FC.00*FC.03=当前线速度V,变频器根据公式:D=(i*V)/(л*n) 自动计算当前卷径;
FC.04=3 m/min,防止TD3300变频器在速度较低时卷径计算不准导致变频器输出力矩的波动;当TD3300变频器运行的线速度低于FC.04设定值时,卷径计算功能停止,保持当前卷径值;当TD3300变频器运行的线速度大于FC.04设定值时,卷径计算功能重新使能。
带载测试,微调PID参数,收卷过程张力平稳,达到控制要求。
4总结:
在作张力控制时,如果既要求张力恒定,又要求张力可调范围要大,最好采用张力闭环模式。
本设备采用TD3300的变频改造后,现场配置简洁,工作稳定,调试方便。实际的收卷效果也很理想,用户已使用较长时间,对改造结果相当满意。
参考文献
1、《TD3300张力控制专用变频器用户手册》 艾默生网络能源有限公司
2、《TD3000高性能矢量控制变频器用户手册》 艾默生网络能源有限公司 (end)
|
|
文章内容仅供参考
(投稿)
(如果您是本文作者,请点击此处)
(11/6/2007) |
| EMERSON 艾默生工业自动化(中国)联系方式:
|
网址: |
http://www.emerson.com/zh-cn
|
电话:86-21-3338 7000 |
地址: |
中国·上海·上海市古美路 1582 号艾默生大厦 5 层 邮编200233 |
|
|
|
对 变频器 有何见解?请到 变频器论坛 畅所欲言吧!
|