到目前为止,在汽车应用中还没有其他的材料表现出钢所具有的多样性。现有的IF钢,DP和HSLA在可成形性方面有很好的表现,能够满足大多数汽车制造的要求。随着提出预测和评估这些裁焊拼板工艺在成形和其他结构特性方面的性能的挑战,这些等级钢的使用已经渗透到裁焊拼板当中了。许多关于裁焊拼板成形行为的报告已经有了记载。在A/SP其中的一篇报告中提及,在疲劳或者循环加载的情况下裁焊拼板的失效对于结构组成来说是非常严重的问题。材料的高循环疲劳强度取决于例如残余压力,局部压力集中和表面保护涂层等表面条件。在运用激光焊接工艺时,残余压力和其他的焊接缺陷被引入到了材料中。由于在这方面只有有限的数据,A/SP已经确定这一领域需要进一步的研究。Wang和Ewing[2]比较了对无涂层的SAE1008等级钢的激光焊接和阻点焊接的疲劳强度。研究表明,与阻点焊剂相比,激光焊接的疲劳强度更高。
Lazzarin et al.[3]测定了在无涂层和热蘸电镀锌条件下相似厚度的激光焊接的疲劳强度。他们总结两种组合的疲劳强度是相似的。先前此领域的工作包括基本的相似厚度裁焊拼板或者由不同厚度的材料组成的裁焊拼板的疲劳行为。对于作者的知识而言,到目前为止关于破裂机制的不同的裁焊拼板没有比较或者基准。
Vickers所做的微硬度测试表明与单个底座金属相比,交叉连接处裁焊拼板具有更高的硬度(图)。在测试的三种裁焊拼板化合物中,我们发现分别与底座金属比较,焊接珠的硬度是它们的2.5倍。正如其他的研究者所报告的一样,这是由于激光焊接加工局部热量输入特性引起的。比较不同焊接工艺在热蘸镀锌低碳钢上的效果,Lazzarin et al指出在焊接时激光焊接比捣碎焊接具有更高的硬度。Rhee et al指出焊接珠的硬度是相似或者不相似厚度底座金属钢板硬度的2.3倍。Lee et al指出激光焊接产生最窄的焊接区域,电波束焊接产生的区域是它的1.5倍,捣碎焊接产生的区域是它的4倍。他们同时也发现激光焊接的微硬度峰值要高于电波束焊接和捣碎焊接。然而,焊接中产生较高硬度的原因却没有说明。
破裂表面检查表明观察裁焊拼版的不同失效模式,所有情况下的初始疲劳裂缝都发生在底座金属。如下图所示这与包含物或者多孔性有关。对于W-Car和MC-DI化合物疲劳裂缝在薄底座金属传播分别为0.75和0.80mm。然而研究发现薄底座金属失效的位置随着应用压力幅度的变化而不同。在90,100,110MPa低幅度下,失效发生在离焊接珠大约2mm的地方;当在120,130MPa高压力幅度下失效产生在离焊接珠大约6-7mm远的地方。对于GMX裁焊拼板化合物来说,失效发生在薄(0.9mm)底座金属,在120-150MPa整个应用加载范围内远离焊接珠大概6-7mm。这个现象源于裁焊拼板厚度变化产生的凹口效应,使得压力集中在焊接头附近。对W-Car和MC-DI(0.92和1.2mm)裁焊拼板的底座金属的厚度差异至少是GMX裁焊拼板工艺的1.5倍。因此W-Car和MC-DI焊接珠附近的压力集中要强于GMX。其他的文献也报道了相似的结果。Rhee et al比较了平行和垂直于装载方向的焊接头运转情况下不同样本的几何外形。装载垂直于焊接珠的样本初始裂缝和最终破裂发生在底座金属与我们当前的观察是相似的。这表明如图3所示高硬度焊接珠的阻抗高于底座金属的阻抗。Oh et al发现产生压力集中和疲劳极限下降的不连续表面引起的凹口效应使得相似厚度裁焊拼板的疲劳极限高于不相似的裁焊拼板。Lazzarin et al也报道说他们在压力下进行的样本可视化检查并没有揭示焊接珠任何明显的横向移位。Lee et al观察了发生在热敏感区的捣碎焊接拼板的疲劳失效以及激光裁焊拼板在底座金属的失效。与激光裁焊拼板相比捣碎焊接有更强的凹口效应,因此在跳动拉伸压力下它具有更低的疲劳强度。