8 b 系统(如示波器)的设计师已经知道如何控制这些问题,但在更高分辨率的系统中,降低乒乓毛刺还需要更复杂的测量。例如,你可以使用公共基准电压、匹配的物理布局以及等长度走线等,实现经典的模拟匹配技术。但在 12 b 以上分辨率时,很多这类技术需要附加电路,它们自身就是误差的来源(参考文献 A)。
降低乒乓效应的另一种技术是数字后处理,它可以在主 PC 的软件中或数字化器内部一片功能强大的 FPGA 中完成。在任何情况下,降低(如果不能完全消除)乒乓造成的图像毛刺和偏移毛刺是非常重要的。否则,就无法实现乒乓采样的目的,只能实现更高的采样速度,而不是更高的分辨率。有一个对示波器和数字化器用户的警告,那就是要特别注意动态规格中的采样速度,它们一般在数据表脚注的小字里可以找到。
图Ba描述了ADC中的非线性成份如何在频率域中显示为谐波。National Instruments的Flex II ADC(参考文献 B)用一片功能强大的 FPGA 和获专利的线性化技术,将这些非线性成份去除,从而在较高采样速率下提供惊人的动态范围(图 Bb)。增加的动态范围使工程师们能够分析出那些传统仪器的噪声本底会丢失的信号。
PXI-5922柔性分辨率数字化器组合有Flex II ADC,可提供高达15M S/s的高分辨率。可以将这单个数字化器用于500 K S/s 下的 24 b采样,或在 15 M S/s下16 b 采样(图 C)。参考文献
A. Looney, Mark, Advanced Digital Post-Processing Techniques Enhance Performance in Time-Interleaved ADC Systems, Analog Dialogue, August 2003.
B. Wagle, Kaustubh and N Knudsen, Flex II ADC Technology White Paper, National Instruments 2005.(end)