人们研究发现纳米碳管的充放电容量可以超过石墨嵌锂化合物理论容量的一倍以上。Z. H. Yang[8]发现用化学气相沉积法制备的纳米碳管容量可达700mAh/ g,Frackowia[9]用Co/ 硅胶为催化剂在900 ℃下催化分解乙炔气体得到的纳米碳管的首次嵌锂容量达到952mAh/ g。但同时也发现与其它碳材料相比,纳米碳管作为负极材料不仅存在电位滞后,而且存在明显的双电层效应。
颗粒度的降低拓宽了人们对电极材料的选择范围
纳米尺寸研究上的突破可能会迅速地改变人们对无机材料的化学/电化学反应原有的认识,原以为不满足传统锂插层标准而被否决的材料现在却值得重新思考了。这来自于2003年Larcher, D等所做的关于宏观&纳米级赤铁矿颗粒与锂的反应活性的对比实验[10]。纳米级赤铁矿颗粒(直径20nm)在可逆插锂过程中容量达0.6Li per Fe2O3,而无相变发生;大颗粒赤铁矿(直径1-2um)当插锂容量达到0.03 Li per Fe2O3时便发生不可逆相变。
参考文献
[1] 吴宇平等著,锂离子电池,化学工业出版社,2004
[2] Mao, O. & Dahn,J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423-427 (1999).
[3] Graetz et al. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194-197 (2003).
[4] Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154-156 (2003).
[5] Novak, P. et al. in Int. Meeting Li Batteries IMLB12 Nara, Japan Abstract 9 (2004).
[6] Armstrong, A. R. et al. Lithium intercalation intoTiO2-B nanowires. Adv. Mater. 17 , 862 - 865 (2005)
[7] Green, M. et al. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75-79 (2003).
[8] Yang Z H , Wu H Q . [J ] . Chemical Physisc Letters , 2001 , 343 : 235-240.
[9] Frackowia K E , Gautie R S , Garche R H , et al . [J ] . Carbon , 1999 , 37 ,61-69.
[10] Larcher, D. et al. Effect of particle size on lithium intercalation into α-Fe2O3.J. Electrochem. Soc. 150, A133-139 (2003).
[11] 郑雪萍,曲选辉,锂离子电池正极材料LiMn2O4研究现状,稀有金属快报,2005.
[12] Dong, W, et al. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457-459 (2000)
[13] Robertson, A. D. et al. Layered LixMnyCo1-yO2 intercalation electrodes: inß uence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380-2386 (2001).
[14] Kang, S. H. et al. Effect of ball-milling on 3 V capacity of lithium manganese oxospinel cathodes. Chem. Mater. 13, 1758-1764 (2001).
[15] Huang, H., Yin, S.-C. & Nazar, L. F. Approaching theoretical capacity ofLiFePO4 at room temperature and high rates. Electrochem. Solid-State Lett. 4,A170-172 (2001).
[16] Croce, F. et al. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456-458 (1998).
[17] Hawett, P. C., MacFarlane, D. R. & Hollenkamp, A. F. High lithium metal cycling efÞ ciency in a room-temperature ionic liquid. Electrochem. Solid-State Lett. 7, A97-101 (2004).
[18] MacGlashan, G.et al. The structure of poly(ethylene oxide)6:LiAsF6. Nature 398, 792-794 (1999).
[19] Gadjourova, Z. et al. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520-523 (2001).
[20] Christie, A. M. et al. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50-53 (2005).
[21] ANTONINO SALVATORE ARICÒ, et al. Nature Materials 4, 366–377 (2005)
[22] http://www.nsc.gov.tw/dept/acro/version01/battery/electric/types/liplus.htm(end)