a. 齿形误差会引起与啮合频率相同的传动误差及噪声,是引起啮合频率上噪声分量的主要原因。中凹齿形是不能接受的,加工中应尽量避免。
b. 齿距误差为随机误差,产生的噪声频率与啮合频率不同,不会提高啮合频率上的噪声幅度,但会加宽齿轮噪声音频的带宽。
c. 轴线在节平面上投影的不平行、齿向误差以及轴在传动负载下的变形会使轮齿在齿宽方向上的接触长度缩短,造成啮合刚性下降,由此产生的传动误差及齿轮传动啮合刚性的周期性变化是产生噪声的另一原因,其对斜齿轮传动影响更大。
a. 长修缘长修缘的齿顶和齿根修缘起始点分别位于单一齿廓啮合时的最高点和最低点,齿顶和齿根修缘量等于特定载荷下一对齿啮合时的轮齿变形量。长修缘可保证在特定载荷下齿轮的传动误差最小。当载荷变化时,因轮齿变形量不同,会产生一定的传动误差(空载下传动误差最大)。长修缘适用于传动载荷和传动速度恒定的场合。图2和图3分别为标准齿轮副和采用长修缘的齿轮副的传动误差随传动载荷变化的情况。
图2 传动载荷变化对标准齿轮副传动误差的影响
图3 传动载荷变化对按载荷2进行长修缘的齿轮副传动误差的影响
b. 短修缘为消除或降低齿轮副设计载荷下的噪声,可采用能有效防止齿顶撞击的短修缘方式。短修缘的修缘量应等于在齿轮设计载荷下一对齿廓接触时的轮齿变形量。优化载荷可在零载荷和齿轮设计载荷之间选取。轮齿的修缘起始点应分别靠近齿顶和齿根,以保证有足够长的齿面无修形,即保证在啮合线上至少有一个基距的长度范围为标准渐开线齿形传动。因此,短修缘的起始点应位于一对齿啮合的最高点与一个基距长度范围内的非修形部分的端点之间。短修缘适用于承受多种载荷的齿轮传动。图4为短修缘齿轮副在不同载荷下的传动误差。
图4 短修缘齿轮副在不同载荷下的传动误差
c. 齿向修缘齿向修缘对于减小大螺旋角斜齿轮的传动误差尤为重要。由于斜齿轮的啮合刚性与同时啮合轮齿的接触线总长度成正比,如啮合轮齿的接触线总长度保持恒定,则齿轮的传动误差将不受传动载荷变动的影响。如果齿轮轴线不平行,在载荷作用下轴的变形或齿轮齿向的热处理变形将使齿轮的载荷移向轮齿一端,使齿面的实际接触宽度缩短。这不仅会造成轮齿局部过载损坏,而且会使斜齿轮啮合的接触线总长度急剧减小,从而严重影响斜齿轮传动的啮合刚性,导致因载荷变动而产生传动误差。将轮齿在齿向上修成鼓形或锥形可减小轴线不平行及轴负载后变形的影响,但对鼓形量应严格控制,因为鼓形量过大会造成啮合轮齿接触线总长度变短,影响齿轮的啮合刚性。
b. 剃齿可消除65%~80%的剃前齿轮误差。加工模数m=2.5~3.5mm的齿轮时,采用推荐的留剃量,齿轮剃前精度满足剃齿要求,则剃齿加工可达到以下精度:齿形误差0.005mm,相邻周节误差0.0075mm,齿向误差0.005mm,基节误差0.001~0.003mm,齿面粗糙度0.63µm。
c. 剃齿加工可方便地完成任何鼓形齿或锥形齿的加工要求。
d. 剃齿加工生产效率极高。如加工一件模数2.54mm,直径73.66mm,齿宽16mm,左旋32°的斜齿轮,使用不同的剃齿方法其加工时间分别为20~40秒。
2) 剃齿参数的选择
a. 轴交角轴交角为剃齿刀轴线与被加工齿轮轴线的交叉角。轴交角为0°时(即剃齿刀轴线与被加工齿轮轴线平行)无切削作用。在剃齿过程中,两交叉轴线使齿轮表面与剃齿刀表面产生从齿顶到齿根的相对斜向滑动,这不仅可对平行轴齿轮传动不均匀的渐开线运动予以补偿,而且为剃削加工提供了必要的剪切运动。在一般情况下,轴交角应为10°~15°。增大轴交角可提高剃削作用,但同时会使啮合接触区宽度减小,导向作用下降。如轴交角过大,会影响剃齿质量。
b. 切削速度剃削的切削速度是指齿面上的相对滑动速度,但人们习惯将剃削加工中剃齿刀节圆上的圆周速度称为切削速度。切削速度很难用数学公式进行计算,因为最经济合理的切削速度不但取决于被剃齿轮材料的可切削性,而且与剃齿刀的圆周速度、轴交角、齿轮参数、轴向滑动运动、渐开线方向上的滑动运动、啮合点位置等密切相关。此外,不同的剃齿方法对切削速度也有不同要求。因此,剃齿的最佳切削速度通常需要通过加工实践来确定。在通用剃齿加工中,推荐采用以下剃齿刀圆周速度:m<3.175时,v=122m/min;3.1758.5时,v=84m/min。对于径向剃齿,可提高切削速度(如可达到150m/min)。对于齿轮轴的剃削,切削速度则应适当降低(如≤100m/min)。
c. 径向进给量径向剃齿的径向进给量同样难以用公式计算,它与工件的材料和硬度、齿面粗糙度要求、切削液、调整参数等有关。在粗剃齿过程中,径向进给量与工件的回转速度(r/min)成正比。轴交角较大时,可适当增大进给量;轴交角较小时(如<11°),则应适当减小进给量。加工压力角较大的齿轮时,应适当减小进给量;反之则应增大进给量。剃齿刀齿面上的小槽间距对径向进给量也有影响,间距大时应减小进给量。精加工或齿面粗糙度要求较高时应采用较小的径向进给量。加工模数m=2的齿轮时,粗加工时,径向进给量可选为0.9~1.1mm/min,精加工时径向进给量可选为0.4~0.6mm/min。
d. 留剃量留剃量的大小是决定剃削成败的关键。应保证有足够的剃削余量以消除齿轮剃前加工误差。但如留剃量过大,则会延长剃齿时间,加大剃齿刀磨损,降低剃齿精度。在保证剃前齿轮精度的前提下,推荐留剃量和齿根沉割量见表1。
d. 应采用带凸角的滚刀或插齿刀加工剃前齿坯,以便在靠近轮齿基圆部位切出很小的根切或沉割,保证剃后齿廓与不需要剃削的齿根圆角之间衔接良好,减少剃齿刀齿顶磨损。并应保证轮齿根切曲线的上端在剃齿刀与轮齿的最低啮合点上接触。
e. 安装剃前齿轮前必须保证其定位表面的清洁。工件芯轴或夹具的定位表面公差不能超过0.005mm,芯轴与工件内孔应配合良好。工件头架和尾座顶尖的圆度或跳动量也不能大于0.005mm。定位表面应为剃前齿轮的加工定位表面。
f. 安装剃齿刀前必须保证剃齿刀内孔、主轴和垫圈的清洁。主轴定位轴径的径向跳动量不能大于0.005mm,端面跳动量也不能大于0.0025mm。剃齿刀安装完毕后,直径240mm以下刀具的端跳不能大于0.015mm,直径180mm以下刀具的端跳不能大于0.01mm。
4) 数控剃齿机的特点
目前在大型齿轮加工企业中,已开始广泛使用数控剃齿机。数控剃齿机具有以下特点:
a. 可满足齿轮加工越来越高的质量标准要求,稳定性和可靠性好,可加工6级或更高精度的齿轮,工程能力指数CP>2。
b. 选择加工参数的范围大,可获得最佳切削参数,从而提高加工效率及加工质量。
c. 机床调整极为方便,更换一种工件所需调整时间仅为几分钟。用于生产线时可将被加工齿轮库存量压缩到最小。
d. 可完成普通剃齿机及PLC控制的剃齿机无法完成的特殊加工,如: